Digital Infrared Photography

PRESENTED BY GREGG KERBER

Topics Covered

- Examples
- What is infrared light?
- How do you convert a DSLR to shoot IR?
- What are good camera choices for IR?
- Which IR conversion filter should you choose?
- How do you shoot digital infrared?
- What are the limitations and issues?
- What are good subjects for IR?
- Resources
- My IR Cameras
- Post Processing

720 nm Canon G10 ISO 100, f/5.6, 1/100s

720 nm Canon G10 ISO 200, f/4.5, 1/80s

720 nm Canon G10 ISO 400, f/4.5, 1/30s

720 nm Canon G10 ISO 320, f/5.6, 1/60s

720 nm Canon G10 ISO 125, f/5.6, 1/100s

720 nm Canon G10 ISO 100, f/5.6, 1/40s

O:GREGG KERBER

MeMENAMINS

THE REPORT

191aa

Taps

720 nm Canon G10 ISO 160, f/5.6, 1/100s

720 nm Canon G10 ISO 320, f/5.6, 1/250s

720 nm Canon G10 ISO 100, f/8, 1/125s

720 nm Canon G10 ISO 100, f/5.6, 1/125s

720 nm Canon G10 ISO 200, f/5.6, 1/13s

720 nm Canon G10 ISO 100, f/5.6, 1/100s

590 nm Olympus EPL5 ISO 200, f/8, 1/250s

WHAT IS INFRARED LIGHT?

HOW DO YOU CONVERT A CAMERA TO SHOOT IR?

Screw-on IR Filter

- Lower cost than camera conversion (\$30-\$150 depending on filter size)
- Limited to VERY long exposures (about 14 stops of light reduction = > 20s exposures)
- Does not work well on certain cameras
- Impossible to get exposure, focus, and composition with filter attached
- Requires more post processing

Camera Conversion (internal IR filter)

- Low-pass filter in front of sensor is removed
- IR filter is installed
- Custom white balance installed
- Cost: Base price = \$175 (P&S) to \$275 (MFT, APS-C, FF)
- Camera will shoot IR only
- Long exposures not required
- You could do it yourself

But I wouldn't

WHAT ARE GOOD CHOICES FOR IR CAMERAS?

CAMERA CONSIDERATIONS

- Point & Shoot
- Mirrorless
- DSLR (one with Live View)
- Consider a used camera or one that's been sitting around not being used anymore
- Check with conversion company for compatible cameras

WHICH IR FILTER SHOULD YOU CHOOSE?

Conversion Filter Choices

- Deep B&W (830nm) No colors
- Standard B&W (720nm) Some red color information
- Enhanced color (665nm) Orange and red

• Super Color (590nm) - Yellow, orange, and red

• Full Spectrum (UV, visible, and IR) - Use with external filters to block IR and UV wavelengths. Great for astro photography.

Filters vs. the Light Spectrum

			wavelength in nanometers (nm) 1×10 nm = 1/1,000,000,000 meter							
							1	1	1	
4	5	6	7	7	8	9	0	1	2	
0	0	D	O	5	0	D	D	0	0	
0	0	D	0	D	0	0	D	0	0	
< Violet	Visib	le Light	Rei	 >	"near" Infrared					
		5 9 0				Super color (590nm)				
			2		Standard B&W (720nm)					>>>
			⁸ Deep B&W (830nm)					n)	>>>	
		Full Sp	ectrum							5

WHAT ARE THE LIMITATIONS AND ISSUES?

Auto Focus

- IR light is longer in wavelength than visible light and causes some cameras to focus differently.
- Photographic lenses are made for visible light without regard to what happens with IR light.
- Focal lengths within a zoom lens can focus IR light differently.
- Auto focus sensors are designed for visible light.
- Conversion usually includes focus calibration for a "standard" lens (Canon 50mm f/1.8, Nikon 18-70 DX, etc).
- To use a "non-standard" lens, send that lens in with the camera to be calibrated for auto focus.
- Using manual focus avoids AF problems.
- Point & Shoot and Mirrorless cameras do not require focus calibration.

Exposure

- Internal light meters are designed for visible light only.
- IR filters only pass a certain range of light frequencies and therefore a different quantity of total light. Some cameras will over-expose by ¹/₃ to ²/₃ stops.
- Depending on conditions and camera, exposure compensation may be needed (or use Manual mode).

White Balance (WB)

- Raw images will be reddish and washed out.
- Use the custom WB installed by the conversion company or set a custom WB in your camera.
- Take a shot of something green to use a custom WB in-camera.
- Lightroom and Photoshop do not have enough temperature adjustment range to get WB right.
- Create a custom WB profile with Adobe DNG Profile Editor and use that profile in Lightroom or Photoshop (<u>http://</u> <u>supportdownloads.adobe.com/detail.jsp?ftpID=5493</u>).
 More on this later...

Common Issues

- Live View allows you to see what the sensor is seeing because there may not be any visible light coming through the viewfinder (DSLRs with screw-on IR filter).
- More **noise** due to camera using the red channel. Shoot at lowest possible ISO.
- **Shooting RAW** allows more latitude in post processing.
- Lens flare and hotspots are a result of lens coatings designed for visible light. Lens flare and center hot spots can result.
- More work in post processing. Converting to B&W (easiest). Creating color images (more difficult).

WHAT ARE GOOD SUBJECTS FOR IR?

Good Subjects for IR

- Clouds and water Clouds pop against a clear sky and water turns black
- **Portraits** IR penetrates skin, minimizing wrinkles and blemishes. Blood vessels may be visible
- Plants and foliage Highly reflective of IR resulting in brilliant whites or bright colors (depending on the filter being used)
- **Reflective metals** Chrome can be very interesting in IR
- Bright mid day sun Now harsh light will be your friend

RESOURCES

RESOURCES

- lifepixel.com
- advancecamera.com
- <u>spencerscamera.com</u>
- kolarivision.com
- Facebook Infrared photography Groups
- photographylife.com
- pamphotography.com
- jimchenphoto.com
- Mark Hilliard's Blog: infraredatelier.wordpress.com/

My IR CAMERAS

MY IR CAMERAS

- Canon G12 point & shoot converted to 720nm
- Olympus Pen EPL-5 mirrorless converted to 590nm
- Canon EOS 6D Mark II converted to full spectrum plus other astro modifications.

POST PROCESSING (USING LIGHTROOM)

ADOBE DNG PROFILE EDITOR

- 1.Download and install Adobe DNG Profile Editor (<u>http://supportdownloads.adobe.com/detail.jsp?ftpID=5493</u>).
- 2.In Lightroom, export an unprocessed RAW image as a DNG.
- 3. Open Adobe DNG Profile Editor.
- 4.File > Open DNG image...
- 5.Open DNG exported from Lightroom.
- 6.Open the Color Matrices tab
- 7. Move the White Balance Temperature slider to -100.
- 8.File > Export (name of camera at bottom of menu).
- 9.Name profile and save.
- 10.Restrart Lightroom.

Post Processing Goals

- Correct white balance
- Increase overall contrast
- Add some sharpness
- Reduce overall noise

NOTE: This example illustrates more processing than most IR images require.

© GREGG KERBER

Unprocessed RAW

After processing

CUSTOM CAMERA PROFILE

- Lightroom (and Photoshop) don't have enough white balance range to get white balance right without a custom profile.
- Download Adobe DNG Profile Editor (free)
- One time action per camera
- In Lightroom, export a photo from the IR camera as a DNG file
- Open the DNG file in *Adobe DNG Profile Editor* and go to the *Color Matrices* tab
- Set White Balance Calibration > Temperature to -100 (can also use other settings for other profiles)
- Save the profile with a custom name
- Profile automatically saved to the proper folder for Lightroom
- Access custom profiles in Lightroom via the Basic panel under 'Profile' (opens the Profile Browser)

Color Tables Tone Curve Color Matrices Options Chart

BASIC PANEL

- Basic panel
- Increase Contrast
- Decrease Highlights
- Increase Whites
- Increase Shadows
- Decrease Blacks
- Increase Clarity

PROFILE BROWSER

- Basic panel
- Select custom profile created with Adobe DNG Profile Editor
- Only profiles for specific camera are listed

BASIC PANEL

- Basic panel
- W/B eye dropper
- Select something green (foreground tree)

HSL PANEL

Add contrast in the sky

HSL PANEL

Desaturate sky but leave a hint of color

DETAIL PANEL

- Add some sharpening (watch for increased noise)
- Use Masking slider to mask out areas that don't need sharpening
 - Add some noise reduction (remember - NR reduces sharpening)

FINAL RESULT

